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Abstract: Humans can identify actions performed by others rapidly and accurately. Here we 
applied machine learning techniques in functional magnetic resonance imaging (fMRI) data to 
reveal the neural mechanism underlying such neural activity. We used searchlight multi-voxel 
pattern analysis method based on support vector machine classifier to identify the regions that can 
discriminate different actions significantly, so as to clarify the brain regions recruited for action 
identifications. Our results indicated that part of the regions in occipito-temporal and frontal cortex 
hold the ability to identify different human actions. 

1. Introduction 
There is an emerging trend in the use of machine learning classifiers for analyzing fMRI data. It 

has been shown that machine learning classifiers can be trained to decode the variables of interest 
from fMRI data, and so as to show the data contain information about them [1]. Humans can identify 
actions performed by others rapidly and accurately. Using machine learning algorithms with fMRI 
data to reveal the neural mechanism of the action perception in human brain could be feasible. 

In the present study, human subjects were scanned while four categories of actions were displayed. 
The fMRI data was collected. After the preprocessing of the data, we used the searchlight 
multi-voxel pattern analysis(MVPA) [2] to find the brain regions that can classify different action 
categories significantly above the chance level. In each classification analysis, the response evoked 
by one stimulus type in a region entered the classifier as input, and different stimulus type acted as 
labels. If one region contained some information about the recognition (to be specific, action 
recognition in the present study), the region should successfully decode different mental states. The 
regions identified with significant above-chance accuracies could be interpreted as being involved in 
the perception. The aim of the current study was to find the regions. 

2. Experimental procedure and methods 
2.1 Experimental Procedure 

Twenty-five healthy volunteers (age: M = 21.8 ± 1.6 years old, 10 females) with normal or 
corrected-to-normal vision were recruited in this study. All participants were right-handed, and 
reported no history of psychiatric or neurologic disorders. Prior to the experiment, all participants 
gave written informed consent and were compensated for their time after the experiment. Eight 
additional participants (finally fMRI data from 17 volunteers were used in this study) were excluded 
for further analyzes because of a poor task performance or excessive head motion.  

A block design was adopted in our experiments. Stimuli included four categories of colored 
natural videos, which depicted jumping, skipping, walking and running from left to right or vice 
versa performed by 8 actors, with similar outdoor backgrounds and 360 pixels wide by 288 pixels 
tall [3]. The exemplar stimuli used in the experiment were illustrated in Fig.1 A. 
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Figure 1. Exemplar stimuli used in motion experiment and functional localizer 

A, Exemplar stimuli used in the motion experiment, including videos depicting four categories of 
human movements performed by 8 actors: walking, running, jumping and skipping, from left to right 
or vice versa; B, exemplar stimuli in functional localizer for EBA, including pictures of headless 
bodies and chairs; C, exemplar stimuli in functional localizer, including point-light biological motion 
videos, scrambled versions and the pictures of static frames from scrambled biological motions. The 
pictures shown here are the screenshots of the two kinds of videos. 

In each scan, 8 stimulus blocks were included. Within each stimulus block, eight 2520-ms videos 
of the same movement performed by different actors were shown, alternating with 480-ms 
inter-stimulus interval accounting for a total time of 24 s for one block. After each block, participants 
were instructed to press a button at the response box within two seconds, indicating which motion 
they had seen. Each session started by a 10-s fixation-only baseline, and followed by a stimulus 
block. The same category of motion was presented twice in a pseudorandom order, with the 
constraint that the same block was not presented in succession. Each scan lasted 282 s, and each 
subject participated in 4 scans [3]. 

The functional and anatomical data were collected by a 3.0 T Siemens scanner in Yantai Hospital 
affiliated to Binzhou Medical University with a 20-channel head-neck coil. Foam pads and earplugs 
were used to reduce the head motion and scanner noise. T1*-weighted images for an anatomical 
localization were acquired using a three dimensional magnetization-prepared rapid-acquisition 
gradient echo (3D MPRAGE) sequence: repetition time (TR) = 1900 ms, echo time (TE) = 2.52 ms, 
voxel size = 1 × 1 × 1 mm3, matrix size = 256 × 256, flip angle (FA) = 9°). T2*-weighted images 
were acquired using an echo-planar image (EPI) sequence: TR = 2000 ms, TE = 30 ms, voxel size = 
3.1 × 3.1 × 4.0 mm3, matrix size = 64 × 64, slices = 33, slices thickness = 4 mm, slices gap = 0.6 mm, 
FA = 90°). 

2.2 Data Processing 
Data preprocessing and statistical analysis were conducted using SPM8 (Wellcome Department of 

Imaging Neuroscience, London; http://www.fil.ion.ucl.ac.uk/spm). First, slice timing and head 
motion correction were performed for the functional data. The structural images (T1) were then 
segmented for normalization after co-registrating to the functional images. The spatial normalization 
parameters were applied to normalize the functional images into the Montreal Neurological Institute 
space (MNI), with a re-sampled voxel size of 3 × 3 × 3 mm3. The images in both functional and 
localizer runs were smoothed with a full-width at half-maximum = 4 × 4 × 4 mm kernel to attenuate 
noise. 

In search of the regions that can discriminate different actions, we conducted a whole-brain 
searchlight analysis [4]. Each time we centered a small spherical ROI (radius 6mm) around every 
voxel of the brain separately for each participant and then calculated the classification accuracy 
within each sphere. The resulting value was assigned to the central voxel of the sphere. A linear 
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support vector machine (SVM) classifier implemented by LIBSVM [5] was adopted. The 
classification accuracies were computed using leave-one-out cross validation. The individual 
accuracy maps for all of the subjects were finally entered into a one-sample t test to identify voxels 
yielding an index significantly above the chance level (0.25). A threshold of p<0.05 was adopted. 

3. Experimental results 
We found a series of brain regions that can discriminate different human actions above the chance 

level, which were summarized in Table 1. The location of the areas was illustrated in Fig. 2. 
Table.1. Clusters identified in the searchlight MVPA analysis 

 Region MNI coordinates voxel 
X Y Z number 

1 Cerebelum_6_R (aal) 12 -60 -24 2159 
2 Occipital_Inf_L (aal) -51 -69 -12 1845 
3 Cerebelum_Crus1_R (aal) 18 -81 -30 136 
4 Lingual_L (aal) -12 -102 -15 136 
5 Cerebelum_6_L (aal) -18 -57 -24 85 
6 Cerebelum_9_R (aal) 6 -51 -48 76 
7 Supp_Motor_Area_R (aal) 9 -3 45 50 
8 Frontal_Inf_Orb_R (aal) 27 27 -24 39 
9 Postcentral_R (aal) 42 -21 48 23 
10 Precentral_L (aal) -54 3 24 19 
11 Olfactory_R (aal) 3 21 -6 18 
12 Temporal_Sup_R (aal) 66 -12 0 14 
13 Frontal_Inf_Tri_L (aal) -48 27 18 14 
14 Paracentral_Lobule_R (aal) 6 -30 78 14 
15 Insula_L (aal) -30 18 9 13 

 

 
Figure 2. Clusters identified in the searchlight MVPA analysis 
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The clusters with significant classification accuracy were listed. A threshold of p<0.05 was 
adopted. For each cluster, only the region showing the minimum p value (maximum t value) is listed. 
MNI coordinates (x, y, z) are indicated. 

4. Discussion 
In the present study, we used machine learning algorithm to decode the fMRI data. Our results 

indicated that part of the brain regions were involved in the action perception. The regions largely 
located at the occipital and temporal cortex, which is consistent with a large number of previous 
work [6-8]. For review, the work by Lingnau and Downing [9] systematically clarified the function 
of lateral occipito-temporal cortex in action processing. Besides, part of the regions in frontal lobe 
was also identified. It is widely acknowledged that, the involvement of frontal and parietal areas in 
action perception is related to the mirror neuron theory, also referred to as the human mirror neuron 
system, MNS. A recent study found that PD patients are impaired in perception of human 
movements, which is considered to be directly related to the impaired abilities in motor execution. 
The results of the study support the hypothesis that motor system may play a causal role in visual 
movement perception [10] 

Besides, to make the results more reliable, it is feasible to apply various classifiers in the data, 
such as Logistic Regression (LR) and Gaussian Naive Bayes (GNB). A comparison between the 
performances of different classifiers is also valuable. Moreover, to reveal the neural mechanisms of 
different cognitive activities, more novel methods could be applied in neuroimaging data. 
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